Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0294743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421995

RESUMO

ASPirin in Reducing Events in the Elderly (ASPREE), a placebo-controlled prevention trial of low dose aspirin, provided the opportunity to establish a biospecimen biobank from initially healthy persons aged 70+ years for future research. The ASPREE Healthy Ageing Biobank (ASPREE Biobank) collected, processed and stored blood and urine samples at -80degC or under nitrogen vapour at two timepoints, three years apart, from a willing subset of Australian ASPREE participants. Written informed consent included separate opt-in questions for biomarker and genetic testing. Fractionated blood and urine were aliquoted into multiple low-volume, barcoded cryotubes for frozen storage within 4 hours of collection. Specially designed and outfitted mobile laboratories provided opportunities for participation by people in regional and rural areas. Detailed, high quality demographic, physiological and clinical data were collected annually through the ASPREE trial. 12,219 participants contributed blood/urine at the first timepoint, 10,617 of these older adults provided 3-year follow-up samples, and an additional 1,712 provided saliva for DNA. The mean participant age was 74 years, 54% were female and 46% lived outside major cities. Despite geographical and logistical challenges, nearly 100% of blood/urine specimens were processed and frozen within 4 hours of collection into >1.4 million aliquots. After a median of 4.7 years, major clinical events among ASPREE Biobank participants included 332 with dementia, 613 with cardiovascular disease events, 1259 with cancer, 357 with major bleeds and 615 had died. The ASPREE Biobank houses and curates a large number of biospecimens collected prior to the clinical manifestations of major disease, and 3-year follow-up samples, all linked to high quality, extensive phenotypic information. This provides the opportunity to identify or validate diagnostic, prognostic and predictive biomarkers, and potentially study biological effectors, of ageing-related diseases or maintenance of older-age good health.


Assuntos
Líquidos Corporais , Envelhecimento Saudável , Idoso , Humanos , Feminino , Masculino , Bancos de Espécimes Biológicos , Austrália , Aspirina , Hematúria
3.
Org Lett ; 25(41): 7470-7475, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37797949

RESUMO

Indole terpenoids make up a large group of secondary metabolites that display an enticing array of bioactivities. While indole diterpene (IDT) and rarely indole sesquiterpene (IST) pathways have been found individually in filamentous fungi, here we show that both cluster types are encoded within the genome of Tolypocladium album. Through heterologous reconstruction, we demonstrate the SES cluster encodes for IST biosynthesis and can tailor IDT substrates produced by the TER cluster.


Assuntos
Diterpenos , Hypocreales , Terpenos , Família Multigênica , Hypocreales/genética , Diterpenos/metabolismo , Indóis/metabolismo
4.
iScience ; 26(4): 106256, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36845030

RESUMO

Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.

5.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220023, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633278

RESUMO

Physical organic chemistry and mechanistic thinking provide a strong intellectual framework for understanding the chemical logic of evolvable informational macromolecules and metabolic transformations in living organisms. These concepts have also led to numerous successes in designing and applying tools to delineate biological function in health and disease, chemical ecology and possible alternative chemistries employed by extraterrestrial life. A symposium at the 2020 Pacifichem meeting was scheduled in December 2020 to discuss designing and exploiting expanded genetic alphabets, methods to understand the biosynthesis of natural products and re-engineering primary metabolism in bacteria. The COVID-19 pandemic led to postponement of in-person discussions, with the symposium eventually being held on 20-21 December 2021 as an online event. This issue is a written record of work presented on biosynthetic pathways and enzyme catalysis, engineering microorganisms with new metabolic capabilities, and the synthesis of non-canonical, nucleobases for medical applications and for studies of alternate chemistries for living organisms. The variety of opinion pieces, reviews and original research articles provide a starting point for innovations that clarify how complex biological systems emerge from the rules of chemical reactivity and mechanism. This article is part of the themed issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
COVID-19 , Biologia Sintética , Humanos , Biologia Sintética/métodos , Pandemias , Bactérias/metabolismo , Catálise
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220039, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36633281

RESUMO

Anthranilate phosphoribosyltransferase catalyses the second reaction in the biosynthesis of tryptophan from chorismate in microorganisms and plants. The enzyme is homodimeric with the active site located in the hinge region between two domains. A range of structures in complex with the substrates, substrate analogues and inhibitors have been determined, and these have provided insights into the catalytic mechanism of this enzyme. Substrate 5-phospho-d-ribose 1-diphosphate (PRPP) binds to the C-terminal domain and coordinates to Mg2+, in a site completed by two flexible loops. Binding of the second substrate anthranilate is more complex, featuring multiple binding sites along an anthranilate channel. This multi-modal binding is consistent with the substrate inhibition observed at high concentrations of anthranilate. A series of structures predict a dissociative mechanism for the reaction, similar to the reaction mechanisms elucidated for other phosphoribosyltransferases. As this enzyme is essential for some pathogens, efforts have been made to develop inhibitors for this enzyme. To date, the best inhibitors exploit the multiple binding sites for anthranilate. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Assuntos
Antranilato Fosforribosiltransferase , ortoaminobenzoatos , Antranilato Fosforribosiltransferase/química , Antranilato Fosforribosiltransferase/metabolismo , Sítios de Ligação , Domínio Catalítico , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo
7.
J Am Chem Soc ; 145(5): 2754-2758, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36710518

RESUMO

The significant structural diversity and potent bioactivity of the fungal indole diterpenes (IDTs) has attracted considerable interest in their biosynthesis. Although substantial skeletal diversity is generated by the action of noncanonical terpene cyclases, comparatively little is known about these enzymes, particularly those involved in the generation of the subgroup containing emindole SA and DA, which show alternate terpenoid skeletons. Here, we describe the IDT biosynthetic machinery generating these unusual IDT architectures from Aspergillus striatus and Aspergillus desertorum. The function of four putative cyclases was interrogated via heterologous expression. Two specific cyclases were identified that catalyze the formation of epimers emindole SA and DA from A. striatus and A. desertorum, respectively. These cyclases are both clustered along with all the elements required for basic IDT biosynthesis yet catalyze an unusual Markovnikov-like cyclization cascade with alternate stereochemical control. Their identification reveals that these alternate architectures are not generated by mechanistically sloppy or promiscuous enzymes, but by cyclases capable of delivering precise regio- and stereospecificities.


Assuntos
Diterpenos , Diterpenos/química , Terpenos/metabolismo , Indóis/química , Ciclização
8.
J Biol Chem ; 299(2): 102789, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509144

RESUMO

α-Isopropylmalate synthase (IPMS) catalyzes the first step in leucine (Leu) biosynthesis and is allosterically regulated by the pathway end product, Leu. IPMS is a dimeric enzyme with each chain consisting of catalytic, accessory, and regulatory domains, with the accessory and regulatory domains of each chain sitting adjacent to the catalytic domain of the other chain. The IPMS crystal structure shows significant asymmetry because of different relative domain conformations in each chain. Owing to the challenges posed by the dynamic and asymmetric structures of IPMS enzymes, the molecular details of their catalytic and allosteric mechanisms are not fully understood. In this study, we have investigated the allosteric feedback mechanism of the IPMS enzyme from the bacterium that causes meningitis, Neisseria meningitidis (NmeIPMS). By combining molecular dynamics simulations with small-angle X-ray scattering, mutagenesis, and heterodimer generation, we demonstrate that Leu-bound NmeIPMS is in a rigid conformational state stabilized by asymmetric interdomain polar interactions. Furthermore, we found removing these polar interactions by mutagenesis impaired the allosteric response without compromising Leu binding. Our results suggest that the allosteric inhibition of NmeIPMS is achieved by restricting the flexibility of the accessory and regulatory domains, demonstrating that significant conformational flexibility is required for catalysis.


Assuntos
2-Isopropilmalato Sintase , Biocatálise , Leucina , Neisseria meningitidis , Domínios Proteicos , 2-Isopropilmalato Sintase/química , 2-Isopropilmalato Sintase/genética , 2-Isopropilmalato Sintase/metabolismo , Regulação Alostérica , Domínio Catalítico , Leucina/biossíntese , Leucina/química , Leucina/metabolismo , Neisseria meningitidis/enzimologia , Neisseria meningitidis/metabolismo , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Multimerização Proteica , Mutagênese , Maleabilidade
9.
Angew Chem Int Ed Engl ; 61(49): e202213364, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199176

RESUMO

Nodulisporic acids (NAs) are structurally complex potent antiinsectan indole diterpenes. We previously reported the biosynthetic gene cluster for these metabolites in Hypoxylon pulicicidum and functionally characterised the first five steps of the biosynthetic pathway. Here we reveal a highly complex biosynthetic array, furnishing multiple end products through expression of cluster components in Penicillium paxilli. We show that seven additional cluster-encoded gene products comprise the biosynthetic machinery that elaborate precursor NAF in this highly branched pathway. The combined action of these enzymes delivers 37 NA congeners including four major end products, NAA, NAA1 , NAA2 and NAA4 . The plethora of intermediates arises due to modification of the carboxylated prenyl tail by a single promiscuous P450 monooxygenase, NodJ, a pivotal branchpoint enzyme which produces four distinct biosynthetic products giving rise to the complex metabolic grid that characterises NA biosynthesis.


Assuntos
Diterpenos , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Família Multigênica , Diterpenos/metabolismo , Vias Biossintéticas
10.
Biochemistry ; 61(17): 1883-1893, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35969806

RESUMO

Enzyme-catalyzed hydrolysis is a fundamental chemical transformation involved in many essential metabolic processes. The enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the hydrolysis of adenosine-containing metabolites in cysteine and methionine metabolism. Although MTAN enzymes contain highly similar active site architecture and generally follow a dissociative (DN*AN) reaction mechanism, substantial differences in reaction rates and chemical transition state structures have been reported. To understand how subtle changes in sequence and structure give rise to differences in chemistry between homologous enzymes, we have probed the reaction coordinates of two MTAN enzymes using quantum mechanical/molecular mechanical and molecular dynamics simulations combined with experimental methods. We show that the transition state structure and energy are significantly affected by the recruitment and positioning of the catalytic water molecule and that subtle differences in the noncatalytic active site residues alter the environment of the catalytic water, leading to changes in the reaction coordinate and observed reaction rate.


Assuntos
N-Glicosil Hidrolases , Água , Catálise , Desoxiadenosinas , Hidrólise , N-Glicosil Hidrolases/química , Purina-Núcleosídeo Fosforilase , Tionucleosídeos
11.
Org Lett ; 24(12): 2332-2337, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35315670

RESUMO

Decoration of the core scaffolds of indole diterpene (IDT) natural products is key to generating structural and bioactivity diversity. Aminoacylation as a tailoring step is rarely linked to terpene biosynthesis and is extremely rare in IDT biosynthesis. Through heterologous pathway reconstruction, we have illuminated the genetic and biochemical basis for the only reported examples of aminoacylation in IDT biosynthesis, demonstrating the unusual involvement of monomodular nonribosomal peptide synthetase (NRPS)-like enzymes in IDT decoration.


Assuntos
Diterpenos , Peptídeo Sintases , Aminoacilação , Indóis , Peptídeo Sintases/metabolismo
12.
J Biol Chem ; 297(3): 101038, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343567

RESUMO

Modular protein assembly has been widely reported as a mechanism for constructing allosteric machinery. Recently, a distinctive allosteric system has been identified in a bienzyme assembly comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM). These enzymes catalyze the first and branch point reactions of aromatic amino acid biosynthesis in the bacterium Prevotella nigrescens (PniDAH7PS), respectively. The interactions between these two distinct catalytic domains support functional interreliance within this bifunctional enzyme. The binding of prephenate, the product of CM-catalyzed reaction, to the CM domain is associated with a striking rearrangement of overall protein conformation that alters the interdomain interactions and allosterically inhibits the DAH7PS activity. Here, we have further investigated the complex allosteric communication demonstrated by this bifunctional enzyme. We observed allosteric activation of CM activity in the presence of all DAH7PS substrates. Using small-angle X-ray scattering (SAXS) experiments, we show that changes in overall protein conformations and dynamics are associated with the presence of different DAH7PS substrates and the allosteric inhibitor prephenate. Furthermore, we have identified an extended interhelix loop located in CM domain, loopC320-F333, as a crucial segment for the interdomain structural and catalytic communications. Our results suggest that the dual-function enzyme PniDAH7PS contains a reciprocal allosteric system between the two enzymatic moieties as a result of this bidirectional interdomain communication. This arrangement allows for a complex feedback and feedforward system for control of pathway flux by connecting the initiation and branch point of aromatic amino acid biosynthesis.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Prevotella nigrescens/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Vias Biossintéticas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Prevotella nigrescens/química , Prevotella nigrescens/enzimologia , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Alinhamento de Sequência
13.
Curr Opin Struct Biol ; 65: 159-167, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32739636

RESUMO

Allosteric regulation of the enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) controls the entry into aromatic amino acid biosynthesis in plants and microorganisms. DAH7PS has acquired a diverse range of allosteric machinery to enable this functionality. This review provides an overview of the current knowledge of the structural basis of allostery in this enzyme family and the evolutionary relationships between the different solutions to allosteric control of aromatic metabolite biosynthesis.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase , Proteínas de Bactérias , Proteínas de Plantas , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/enzimologia
14.
Genet Med ; 22(11): 1883-1886, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32606442

RESUMO

PURPOSE: To measure the prevalence of medically actionable pathogenic variants (PVs) among a population of healthy elderly individuals. METHODS: We used targeted sequencing to detect pathogenic or likely pathogenic variants in 55 genes associated with autosomal dominant medically actionable conditions, among a population of 13,131 individuals aged 70 or older (mean age 75 years) enrolled in the ASPirin in Reducing Events in the Elderly (ASPREE) trial. Participants had no previous diagnosis or current symptoms of cardiovascular disease, physical disability or dementia, and no current diagnosis of life-threatening cancer. Variant curation followed American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) standards. RESULTS: One in 75 (1.3%) healthy elderly individuals carried a PV. This was lower than rates reported from population-based studies, which have ranged from 1.8% to 3.4%. We detected 20 PV carriers for Lynch syndrome (MSH6/MLH1/MSH2/PMS2) and 13 for familial hypercholesterolemia (LDLR/APOB/PCSK9). Among 7056 female participants, we detected 15 BRCA1/BRCA2 PV carriers (1 in 470 females). We detected 86 carriers of PVs in lower-penetrance genes associated with inherited cardiac disorders. CONCLUSION: Medically actionable PVs are carried in a healthy elderly population. Our findings raise questions about the actionability of lower-penetrance genes, especially when PVs are detected in the absence of symptoms and/or family history of disease.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Pró-Proteína Convertase 9 , Idoso , Neoplasias Colorretais Hereditárias sem Polipose/genética , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Humanos
15.
J Biol Chem ; 295(19): 6252-6262, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32217694

RESUMO

Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Proteínas de Bactérias/química , Mutação de Sentido Incorreto , Mycobacterium tuberculosis/enzimologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Mycobacterium tuberculosis/genética
16.
Medchemcomm ; 10(7): 1160-1164, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31391888

RESUMO

Prenylation of aromatic compounds is a key tailoring reaction in biosynthesis of bioactive indole-diterpenes. Here, we identify NodD1 as the enzyme responsible for the bisprenylation of nodulisporic acid F. This prenyltransferase showed a preference for its natural indole-diterpene substrate whereas other related enzymes were not able to catalyse this conversion.

17.
Biophys J ; 116(10): 1887-1897, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31053263

RESUMO

Allosteric regulation plays an important role in the control of metabolic flux in biosynthetic pathways. In microorganisms, many enzymes in these pathways adopt different strategies of allostery to allow the tuning of their activities in response to metabolic demand. Thus, it is important to uncover the mechanism of allosteric signal transmission to fully comprehend the complex control of enzyme function and its evolution. ATP-phosphoribosyltransferase (ATP-PRT), as the first enzyme in the histidine biosynthetic pathway, is allosterically regulated by histidine and offers a good platform for the study of allostery. Two forms of ATP-PRT, namely long and short forms, were discovered that show different arrangements of their regulatory machinery. Crystal structures of the long-form ATP-PRT have revealed overall conformational changes in the inhibited state, but the observed changes in the active state are quite subtle, making the elucidation of its allosteric mechanism difficult. Here, we combine computational methods (ligand docking, quantum mechanics/molecular mechanics optimization, and molecular dynamic simulations) with experimental studies to probe the signal transmission between remote allosteric and active sites. Our results reveal that distinct conformational ensembles of the catalytic domain with different dynamic properties exist in the ligand-free and histidine-bound enzymes. These ensembles display different capabilities in supporting the catalytic and allosteric function of ATP-PRT. The findings give insight into the underlying mechanism of allostery and allow us to propose that the hinge twisting within the catalytic domain is the key for both enhancement of catalysis and provision of regulation in ATP-PRT enzymes.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Biocatálise , Histidina/biossíntese , Regulação Alostérica , Domínio Catalítico , Simulação de Dinâmica Molecular
18.
J Biol Chem ; 294(13): 4828-4842, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30670586

RESUMO

Because of their special organization, multifunctional enzymes play crucial roles in improving the performance of metabolic pathways. For example, the bacterium Prevotella nigrescens contains a distinctive bifunctional protein comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS), catalyzing the first reaction of the biosynthetic pathway of aromatic amino acids, and a chorismate mutase (CM), functioning at a branch of this pathway leading to the synthesis of tyrosine and phenylalanine. In this study, we characterized this P. nigrescens enzyme and found that its two catalytic activities exhibit substantial hetero-interdependence and that the separation of its two distinct catalytic domains results in a dramatic loss of both DAH7PS and CM activities. The protein displayed a unique dimeric assembly, with dimerization solely via the CM domain. Small angle X-ray scattering (SAXS)-based structural analysis of this protein indicated a DAH7PS-CM hetero-interaction between the DAH7PS and CM domains, unlike the homo-association between DAH7PS domains normally observed for other DAH7PS proteins. This hetero-interaction provides a structural basis for the functional interdependence between the two domains observed here. Moreover, we observed that DAH7PS is allosterically inhibited by prephenate, the product of the CM-catalyzed reaction. This allostery was accompanied by a striking conformational change as observed by SAXS, implying that altering the hetero-domain interaction underpins the allosteric inhibition. We conclude that for this C-terminal CM-linked DAH7PS, catalytic function and allosteric regulation appear to be delivered by a common mechanism, revealing a distinct and efficient evolutionary strategy to utilize the functional advantages of a bifunctional enzyme.


Assuntos
Alquil e Aril Transferases/química , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Prevotella nigrescens/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Regulação Alostérica , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30242059

RESUMO

In Pseudomonas aeruginosa (Pae), the shikimate pathway end product, chorismate, serves as the last common precursor for the biosynthesis of both primary aromatic metabolites, including phenylalanine, tyrosine and tryptophan, and secondary aromatic metabolites, including phenazine-1-carboxylic acid (PCA) and pyocyanin (PYO). The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyses the first committed step of the shikimate pathway, en route to chorismate. P. aeruginosa expresses multiple, distinct DAH7PSs that are associated with either primary or secondary aromatic compound biosynthesis. Here we report the structure of a type II DAH7PS, encoded by phzC as part of the duplicated phenazine biosynthetic cluster, from P. aeruginosa (PAO1) revealing for the first time the structure of a type II DAH7PS involved in secondary metabolism. The omission of the structural elements α2a and α2b, relative to other characterised type II DAH7PSs, leads to the formation of an alternative, dimeric, solution-state structure for this type II DAH7PS with an oligomeric interface that has not previously been characterised and that does not facilitate the formation of aromatic amino acid allosteric binding sites. The sequence similarity and, in particular, the common N-terminal extension suggest a common origin for the type II DAH7PSs from P. aeruginosa. The results described in the present study support an expanded classification of the type II DAH7PSs as type IIA and type IIB based on sequence characteristics, structure and function of the resultant proteins, and on defined physiological roles within primary or secondary metabolism.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Regulação Alostérica/genética , Pseudomonas aeruginosa/enzimologia , Piocianina/biossíntese , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Sequência de Aminoácidos/genética , Sítios de Ligação , Cristalografia por Raios X , Fosfatos/metabolismo , Ligação Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Piocianina/química , Piocianina/genética , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo
20.
Bioorg Med Chem Lett ; 28(13): 2239-2243, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859905

RESUMO

Energy generation is a promising area of drug discovery for both bacterial pathogens and parasites. Type II NADH dehydrogenase (NDH-2), a vital respiratory membrane protein, has attracted attention as a target for the development of new antitubercular and antimalarial agents. To date, however, no potent, specific inhibitors have been identified. Here, we performed a site-directed screening technique, tethering-fragment based drug discovery, against wild-type and mutant forms of NDH-2 containing engineered active-site cysteines. Inhibitory fragments displayed IC50 values between 3 and 110 µM against NDH-2 mutants. Possible binding poses were investigated by in silico modelling, providing a basis for optimisation of fragment binding and improved potency against NDH-2.


Assuntos
Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Proteínas de Membrana/metabolismo , NADH Desidrogenase/metabolismo , Bacillaceae/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cisteína/química , Cisteína/genética , Inibidores Enzimáticos/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/química , NADH Desidrogenase/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...